Instructor : Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 823-2790
http://www.cs.ucf.edu/courses/cgs2545/sum2007

School of Electrical Engineering and Computer Science
University of Central Florida

CGS 2545: Database Concepts (Chapter 7 Page 1 Mark Llewellyn

[

Objectives

* Definition of terms.
* Discuss advantages of standardized SQL.

* Define a database using SQL data definition
language.

* Write single table queries using SQL.

Establish referential integrity using SQL.
Work with Views.

CGS 2545: Database Concepts (Chapter 7) Page 2 Mark Llewellyn

The Physical Design Stage of SDLC
(Figures 2-4, 2-5 revisited)

Project Identification Purpose —programming, testing,
and Selection training, installation, documenting

\ Project Initation Deliverable — operational programs,
and Planning documentation, training materials,
rogram/data structures
Analysis \Rv
\ Logical Design \
K Physical Design
Database activity — k T
. . mplementation
physical database design and i

database implementation _
Maintenance

P
CGS 2545: Database Concepts (Chapter 7) Page 3 Mark Llewellyn @]

SQL Overview

* SQL = Structured Query Language.

 The standard for relational database management
systems (RDBMS).

* SQL-99 and SQL: 2003 Standards — Purpose:

— Specify syntax/semantics for data definition and
manipulation.

— Define data structures.

— Enable portability.

— Specify minimal (level 1) and complete (level 2) standards.
— Allow for later growth/enhancement to standard.

P
CGS 2545: Database Concepts (Chapter 7) Page 4 Mark Llewellyn @]

Benefits of a Standardized Relational
Language
* Reduced training costs
* Productivity
* Application portability
* Application longevity
* Reduced dependence on a single vendor

e Cross-system communication

CGS 2545: Database Concepts (Chapter 7) Page 5 Mark Llewellyn

The SQL Environment

Catalog

« Schema

user (base tables, views, constraints).

Data Definition Language (DDL)

and dropping tables and establishing constraints.

Data Manipulation Language (DML)

— Commands that maintain and query a database.

Data Control Language (DCL)

privileges and committing data.

CGS 2545: Database Concepts (Chapter 7) Page 6 Mark Llewellyn

— A set of schemas that constitute the description of a database.

— The structure that contains descriptions of objects created by a

— Commands that define a database, including creating, altering,

— Commands that control a database, including administering

|

Figure 7-1 (page 294).

by the SQL:2003 standard

SQL Environment

Catalog: DEV_C

v
Developmental -

database

Required
information
schema

User schemas —‘
[

PROGRAMS

&

SaL

queries

¥

DBEMS

A simplified schematic of a typical SQL environment, as described

Production
database

Catalog: PROD_C

Required
information
schema

[

User schemas —‘

CGS 2545: Database Concepts (Chapter 7)

Page 7

Mark Llewellyn

Some SQL Data Types (from Oracle 9i)

* String types
— CHAR(n) — fixed-length character data, n characters long
Maximum length = 2000 bytes
— VARCHAR2(n) — variable length character data, maximum 4000
bytes
— LONG - variable-length character data, up to 4GB. Maximum 1
per table

* Numeric types
— NUMBER(p,q) — general purpose numeric data type

— INTEGER(p) — signed integer, p digits wide

— FLOAT(p) — floating point in scientific notation with p binary
digits precision

* Date/time type
— DATE — fixed-length date/time in dd-mm-yy form

CGS 2545: Database Concepts (Chapter 7) Page 8 Mark Llewellyn

Figure 7-4 (PAGE 297):

DDL

Define the database:
CREATE tables, indexes, views
Establish foreign keys
Drop or truncate tables

DDL, DML, DCL, and the database development process

DML

Load the database:
INSERT data

UPDATE the database

Manipulate the database:
SELECT

DCL
Control the database:
GRANT, ADD, REVOKE

Fhysical Design

= Implementation

Maintenance

CGS 2545: Database Concepts (Chapter 7)

Page 9

Mark Llewellyn

SQL Database Definition

» Data Definition Language (DDL)

* Major CREATE statements:

— CREATE SCHEMA - defines a portion of the database
owned by a particular user.

— CREATE TABLE — defines a table and its columns.
— CREATE VIEW — defines a logical table from one or
more views.
e Other CREATE statements: CHARACTER SET,
COLLATION, TRANSLATION, ASSERTION,
DOMAIN.

CGS 2545: Database Concepts (Chapter 7) Page 10 Mark Llewellyn

Table Creation

Figure 7-5: General syntax for CREATE TABLE

CREATE TABLE tablename
({column definition [table constraint] } ., ..
[ON COMMIT {DELETE | PRESERVE} ROWS]);

where column definition ::=
column_name
{domain name | datatype [(size)] }
[column_constraint_clause . . .]
[default value]
[collate clause]

and table constraint ::=
[CONSTRAINT constraint_name]
Constraint_type [constraint_attributes]

Steps in table creation:

1.

Identify data types for

attributes

Identify columns that
and cannot be null

Identify columns that

can

must

be unique (candidate keys)

Identify primary key-
foreign key mates

Determine default values

Identify constraints on

columns (domain
specifications)

Create the table and
associated indexes

CGS 2545: Database Concepts (Chapter 7) Page 11

Mark Llewellyn

|

CUSTOMER

Places

ORDER

/ \ Is placed by

Contains

The following few slides create tables for this
enterprise data model

Figure 2-1 Segment from enterprise data model (Pine Valley Furniture Company)

PRODUCT

Has

/\ Is for

Is contained in

-
1‘""&.

ORDER
LINE

CGS 2545: Database Concepts (Chapter 7)

Page 12

Mark Llewellyn

Figure 7-6: SQL database definition commands for Pine Valley Furniture

CREATE TABLE CUSTOMER_T

(CUSTOMER_ID NUMBER{11, 0) NOT NULL,

CUSTOMER_NAME VARGHARZ(Z5) NOT NULL, Overall table
CUSTOMER_ADDRESS VARCHAR2(30), "

CITY VARCHARZ{20), definitions
STATE VARCHARZ(Z),

POSTAL_CODE VARCHARZ (S,

COMNSTRAINT CUSTOMER_PK PRIMARY KEY (CUSTOMER_ID));
CREATE TABLE ORDER_T

{ORDER_ID NUMBER{11, 0) NOT MLLL,
ORDER_DATE DATE DEFALLT SYSDATE,
CUSTOMER_ID MUMEER{11, 0},

COMSTRAINT ORDER_PK PRIMARY KEY (ORDER_ID),
COMSTRAINT ORDER_FK FOREIGN KEY (CUSTOMER_ID) REFERENCES CUSTOMER_T{CUSTOMER_ID));

C-REATE TABLE PRODUCT_T

(PRODUCT_ID INTEGER NOT NULL,
PRODUCT_DESCRIPFTION VARCHARZ(50),
PRODUCT_FINISH VARCHARZ(20)

CHECK {PRODUCT_FINISH IN {'Cherry’, ‘Matural Ash', "White Ash’,
'Red Oak', 'Matural Oak’, “Walnut')),
STAMNDARD_PRICE DECIMAL(E,2),
PRODUCT_LINE_ID INTEGER,
COMNSTRAINT PRODUCT_PK PRIMARY KEY [PRODUCT_ID));

CREATE TABLE ORDER_LINE_T

{ORDER_ID NUMBER{11,0) NOT MULL,
PRODUCT_ID NUMBER{11.0) NOT MULL,
ORDERED_CQUANTITY NUMBER{11.0},

COMSTRAINT ORDER_LIME_PE PRIMARY KEY (ORDER_ID, PRODUCT_ID),
COMNSTRAINT ORDER_LINE_FK1 FOREIGN KEY|ORDER_ID) REFERENCES ORDER_T{ORDER_ID),
COMSTRAINT ORDER_LIME_FKZ FOREIGM KEY (PFRODUCT_ID) REFERENCES PRODUCT_T{PRODUCT_IDY);

CGS 2545: Database Concepts (Chapter 7) Page 13 Mark Llewellyn gjj

Defining attributes and their data types

NOTNULL,

CREATE TABLE PRODUCT T
PRODUCT D NTEGER
PRODUCT_DESCRITION VARCHARZE0)
PRODUCTFINSH ~ VARCHARD(

——— CHECK PRODUCT FINSHIX
SANDARD PRICE DECAL),
PRODUCTUNED INTEGER,

(Cherry', ‘Natural Ash’, White Ash

‘Red Oak’, ‘Natural Qak’, 'Walnut}),

CONSTRAINT PRODUCT_PK PRIMARY KEY (PRODUCT D))

CGS 2545: Database Concepts (Chapter 7)

Page 14

Mark Llewellyn e

CREATE TABLE PRODL
(PRODU
PRODU

PRODU

STANDARD_PRICE
PRODUCT_LINE_ID

CT T
CT 1D

Non-null specification

INTEGER | NOT NULL,

CT_DESCRIPTION VARCH
CT_FINISH VARCH

AR2(50
AR2(20

CHECK (PRODUCT F

NISH IN (Cherry’, ‘Natural Ash’, ‘White Ash’
Red Oak’, ‘Natural Oak’, Walnut)),

CONSTRAINT PRODUCT_PK PRIMARY KEY (PRODUCT_ID))

Identifying primary key

CGS 2545: Database Concepts (Chapter 7)

Page 15 Mark Llewellyn

DECIMAL(6.2),

INTEGER,
Primary keys
can never have
NULL values

&

CREATE TABLE ORDER_LINE_T Non-null specifications

(ORDER_ID NUMBER(11,0) NOT NULL,
PRODUCT_ID NUMBER(11,0) NOT NULL,
ORDERED_QUANTITY NUMBER(110),

(0

-

STRAINT ORDER_LINE_PK PRIARY KEY (ORDER_ID, PRODUCT D), | Primary key

(O
(O

-

STRAINT ORDER _LINE_FK1 FOREIGN KEY(ORDER D) REFERENCES ORDER _T(ORDER_ID),
STRAINT ORDER_LINE_FK2 FOREIGN KEY (PRODUCT_ID) REFERENGES PRODUCT_T(PRODUCT_ID))

-

Some primary keys are composite —
composed of multiple attributes

CGS 2545: Database Concepts (Chapter 7) Page 16 Mark Llewellyn e

CREATE TABLE ORDER_T
(ORDER_ID
ORDER_DATE
CUSTOMER_ID

Controlling the values 1n attributes

NUMBER(11. 0)NOT NUL| Default value
DATE DEFAULT SYSDATE,

NUMBER(11, 0),

CONSTRAINT ORDER_PK PRIMARY KEY (ORDER_ID),
CONSTRAINT ORDER_FK FOREIGN KEY (CUSTOMER_ID) REFERENCES CUSTOMER_T(CUSTOMER_ID));

CREATE TABLE PRODUCT_T
(PRODUCT_ID INTEGER NOT NULL,
PRODUCT_DESCRIPTION VARCHAR2(30),
PRODUCT _FINISH VARCHAR2(20)

CHECK (PRODUCT_FINISH IN (‘Cherry’, ‘Natural Ash’, "White Ash’,

‘Red Oak’, ‘Natural Oak’, ‘Walnut')),

STANDARD_PRICE
PRODUCT_LINE_ID

DECIVALTS 7,

INTEGER, Domain constraint

CGS 2545: Database Concepts (Chapter 7)

Page 17 Mark Llewellyn

Identifying foreign keys and establishing relationships

CREATE TABLE CUSTOMER T

(CUSTOMER_ID NUMBER(11,NOTNULL, | Primary key of
CUSTOMER NAME VARCHARZS)NOTNULL, parent table
CUSTOMER ADDRESS ~ VARCHAR2(30).
oITY VARCHAR?(20),
STATE VARCHAR2(2).
POSTAL CODE VARCHAR2(9)
CONSTRAINT CUSTOMER PK PRIMARY KEY (CUSTOMER D))
CREATE TABLE ORDER T
(ORDER_ID NUMBER(41, 0} NOT NULL.
ORDER DATE DATE DEFALTSYSOE, oo ke of
CUSTOMER D NUMBER(11, 0}, y
CONSTRAINT ORDER_PK PRIMARY KEY (ORDER D), dependent table

CONSTRAINT ORDER_FK FOREIGN KEY (CUSTOMER_ID) REFERENCES CUSTOMER_T(CUSTOMER_ID));

CGS 2545: Database Concepts (Chapter 7) Page 18 Mark Llewellyn 0

Data Integrity Controls

» Referential integrity — constraint that ensures
that foreign key values of a table must match
primary key values of a related table in 1:M

relationships.
» Restricting:
— Deletes of primary records.

— Updates of primary records.

— Inserts of dependent records.

CGS 2545: Database Concepts (Chapter 7) Page 19 Mark Llewellyn

Figure 7-7 Ensuring data integrity through updates

CUSTOMER < ORDER
(PK=CUSTOMER_ID) (FK=CUSTOMER_ID)

Relational
Restricted Update: A customer ID can only be deleted if it is not found in ORDER table. . . .
CREATE TABLE CUSTOMER_T 1ntegr1ty IS
(CUSTOMER_ID INTEGER DEFAULT ‘C999" NOT NULL, .
CUSTOMER_NAME VARCHAR(40) NOT NULL, enforced via
CONSTRAINT CUSTOMER_PK PRIMARY KEY (CUSTOMER_ID), the prlmary_
ON UPDATE RESTRICT); key tO forei gn_
Cascaded Update: Changing a customer ID in the CUSTOMER table will result in that
value changing in the ORDER table to match. key matCh

... ON UPDATE CASCADE);

Set Null Update: When a customer |D is changed, any customer ID in the ORDER table
that matches the old customer ID is set to NULL.

... ON UPDATE SET NULL);

Set Default Update: When a customer ID is changed, any customer ID in the ORDER
tables that matches the old customer |D is set to a predefined default value.

... ON UPDATE SET DEFAULT);

CGS 2545: Database Concepts (Chapter 7) Page 20 Mark Llewellyn

Changing and Removing Tables

change column specifications:

VARCHAR(2))

remove tables from your schema:
— DROP TABLE CUSTOMER T

CGS 2545: Database Concepts (Chapter 7) Page 21 Mark Llewellyn

« ALTER TABLE statement allows you to
— ALTER TABLE CUSTOMER T ADD (TYPE

« DROP TABLE statement allows you to

Schema Definition

» Control processing/storage efficiency:
— Choice of indexes
— File organizations for base tables
— File organizations for indexes
— Data clustering
— Statistics maintenance

* Creating indexes
— Speed up random/sequential access to base table data

— Example

- CREATE INDEX NAME_IDX ON
CUSTOMER T(CUSTOMER NAME)

* This makes an index for the CUSTOMER NAME field of the
CUSTOMER T table

CGS 2545: Database Concepts (Chapter 7) Page 22 Mark Llewellyn

Insert Statement

 Adds data to a table

 Inserting into a table

— INSERT INTO CUSTOMER T VALUES (001,
‘Contemporary Casuals’, 1355 S. Himes Blvd.’, ‘Gainesville’,
‘FL’, 32601);

 Inserting a record that has some null attributes requires

identifying the fields that actually get data

— INSERT INTO PRODUCT T (PRODUCT ID,
PRODUCT DESCRIPTION,PRODUCT FINISH, STANDARD PRICE,
PRODUCT ON HAND) VALUES (1, ‘End Table’, ‘Cherry’, 175, 8);

 Inserting from another table

— INSERT INTO CA_CUSTOMER T SELECT * FROM CUSTOMER T
WHERE STATE = ‘CA’;

e
,

o

CGS 2545: Database Concepts (Chapter 7) Page 23 Mark Llewellyn %}j

Delete Statement

e Removes rows from a table.

e Delete certain rows

— DELETE FROM CUSTOMER T WHERE
STATE = ‘HI’;

e Delete all rows
— DELETE FROM CUSTOMER T;

CGS 2545: Database Concepts (Chapter 7) Page 24 Mark Llewellyn

Update Statement

e Modifies data in existing rows

- UPDATE PRODUCT T SET UNIT PRICE = 775
WHERE PRODUCT ID = 7;

CGS 2545: Database Concepts (Chapter 7) Page 25 Mark Llewellyn

SELECT Statement

» Used for queries on single or multiple tables.

 (Clauses of the SELECT statement:
— SELECT

 List the columns (and expressions) that should be returned from the query

— FROM

 Indicate the table(s) or view(s) from which data will be obtained

— WHERE

» Indicate the conditions under which a row will be included in the result

— GROUP BY

* Indicate categorization of results

— HAVING

 Indicate the conditions under which a category (group) will be included

— ORDER BY

» Sorts the result according to specified criteria

—

CGS 2545: Database Concepts (Chapter 7) Page 26 Mark Llewellyn %}j

Figure 7-8:

SQL statement

FROM
Ildentifies
invalved tables

¥

VWHERE
Finds all rows
meeting stated

condition{s)

processing order

k. 4

GROUP BY
Organizes rows
according to wvalues

in stated column(s)
b i

HAWVIMNG
Finds all groups
meeting stated
condition{s)

SELECT
Identifies
colurmns

w

ORDER BY
Soris rows

4 -

results

CGS 2545: Database Concepts (Chapter 7)

Page 27 Mark Llewellyn

SELECT Example
 Find products with standard price less than $275

SELECT PRODUCT NAME, STANDARD PRICE
FROM PRODUCT V

WHERE STANDARD PRICE <275;

Table 7-3 Comparison Operators in
SaL

Operator Meaning

Equal to
Greater than

Greater than or equal to

Less than

Table 7-3
Comparison
Operators in SQL

Less than or equal to

A

Not equal to

— A AN AV VI

Not equal to

—

CGS 2545: Database Concepts (Chapter 7) Page 28 Mark Llewellyn

SELECT Example using Alias

 Alias 1s an alternative column or table name.

SELECT CUST.CUSTOMER AS NAME,
CUST.CUSTOMER ADDRESS

FROM CUSTOMER V CUST
WHERE NAME = ‘Home Furnishings’;

CGS 2545: Database Concepts (Chapter 7) Page 29 Mark Llewellyn

totals

WHERE ORDER

SELECT Example Using a Function

» Using the COUNT aggregate function to find

SELECT COUNT(*) FROM ORDER LINE V

= 1004;

CGS 2545: Database Concepts (Chapter 7) Page 30 Mark Llewellyn

Note: with aggregate functions you can’t have single-
valued columns included in the SELECT clause

|

SELECT Example — Boolean Operators

 AND, OR, and NOT Operators for customizing
conditions in WHERE clause

SELECT PRODUCT DESCRIPTION, PRODUCT FINISH,
STANDARD PRICE

FROM PRODUCT V
WHERE (PRODUCT DESCRIPTION LIKE ‘%Desk’
OR PRODUCT DESCRIPTION LIKE ‘%Table’)

AND UNIT PRICE > 300;

Note: the LIKE operator allows you to compare strings using wildcards. For
example, the % wildcard in ‘%Desk’ indicates that all strings that have any
number of characters preceding the word “Desk’ will be allowed

P
CGS 2545: Database Concepts (Chapter 7) Page 31 Mark Llewellyn @]

SELECT Example —
Sorting Results with the ORDER BY Clause

* Sort the results first by STATE, and within a state
by CUSTOMER NAME

SELECT CUSTOMER NAME, CITY, STATE

FROM CUSTOMER V
WHERE STATE IN (‘FL’, ‘TX’, ‘CA’, ‘HI")
ORDER BY STATE, CUSTOMER NAME;

Note: the IN operator in this example allows you to include rows whose
STATE value is either FL, TX, CA, or HI. It is more efficient than separate

OR conditions

P
CGS 2545: Database Concepts (Chapter 7) Page 32 Mark Llewellyn @]

SELECT Example —
Categorizing Results Using the GROUP BY Clause

* For use with aggregate functions

— Scalar aggregate: single value returned from SQL query with aggregate
function

— Vector aggregate: multiple values returned from SQL query with
aggregate function (via GROUP BY)

SELECT STATE, COUNT(STATE)
FROM CUSTOMER V
GROUP BY STATE;

Note: you can use single-value fields with aggregate functions
if they are included in the GROUP BY clause.

P
CGS 2545: Database Concepts (Chapter 7) Page 33 Mark Llewellyn @]

SELECT Example —

Qualifying Results by Category Using the HAVING Clause

e For use with GROUP BY

SELECT STATE, COUNT(STATE)
FROM CUSTOMER V

GROUP BY STATE

HAVING COUNT(STATE) > 1;

Like a WHERE clause, but i1t operates on groups (categories), not on

individual rows. Here, only those groups with total numbers greater than

1 will be included in final result

CGS 2545: Database Concepts (Chapter 7) Page 34 Mark Llewellyn

